
dxDAO Carrot KPI Token Review

June, 2021



Chapter 1

Introduction

1.1 Scope of Work
This code review was prepared by Sunfish Technology, LLC at the request of members
of dxDAO, an organization governed by a smart contract on the Ethereum blockchain.

This review covers a "KPI token" contract, which is an ERC20 token that is condi-
tionally redeemable for another ERC20 token based on the result of a call to an external
"oracle" contract.

Additionally, this review covers a deployment contract unrelated to the KPI token
code.

1.2 Source Files
This review covers code from the following public git repositories and commits:

https://github.com/Carrot-KPIs/carrot-contracts
5ded5a893c244a2836eac1a55ddb05bce9e03902

https://github.com/luzzif/dxdao-liquidity-mining-relayer-contracts
079af3e03ddc981e50bdb69d446d6e4e4f7143a7

Within those commit ranges, only the following files were reviewed:

• carrot-contracts/contracts/KPIToken.sol

• carrot-contracts/contracts/KPITokensFactory.sol

• dxdao-liquidity-mining-relayer-contracts/contracts/DXdaoLiquidityMiningRelayer.sol

1



This review was conducted under the optimistic assumption that all of the support-
ing software infrastructure necessary for the deployment and operation of the reviewed
code works as intended. There may be critical defects in code outside of the scope of
this review that could render deployed smart contracts inoperable or exploitable.

1.3 License and Disclaimer of Warranty
This source code review is not an endorsement of the code or its suitability for any
legal/regulatory regime, and it is not intended as a definitive or exhaustive list of de-
fects. This document is provided expressly for the benefit of dxDAO developers and
only under the following terms:

THIS REVIEW IS PROVIDED BY SUNFISH TECHNOLOGY, LLC. “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
SUNFISH TECHNOLOGY, LLC. OR ITS OWNERS OR EMPLOYEES BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS REPORT OR REVIEWED SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

2



Chapter 2

Moderate Issues

Issues discussed in this section are code defects that may lead to unintended deviations
in behavior. It may be possible to chain multiple moderate defects into a working
exploit.

2.1 Reentrancy in Finalization
The KPIToken.finalized variable that is checked at the beginning of KPIToken.finalize()
is only set to true at the end of the finalize() function. Consequently, the calls to
collateralToken.safeTransfer() on lines 85 and 94 of KPIToken.sol may al-
low the the finalize() function to be re-entered. (Some ERC20 tokens implement
features that allow the recipient of a token transfer to execute an ERC20 "fallback"
function.)

This reentrancy is exploitable by the creator address insofar as it allows for col-
lateralAmount tokens to be transferred each time the function is re-entered. How-
ever, under most circumstances the balance of the KPIToken contract will be just col-
lateralAmount, in which case the subsequent calls to finalize() will revert.

The fix for this issue is to move the finalize = true; statement on line 101 to
the top of the function just after the require(!finalized); statement.

Interestingly, though, this bug allows the creator to work around the issue de-
scribed in section 3.1.

3



Chapter 3

Minor Issues

Issues discussed in this sections are subjective code defects that affect readability, reli-
ability, or performance.

3.1 Lost Collateral Tokens
If collateralToken.balanceOf(KPIToken) > collateralAmount, then all of
the additional tokens in the contract will be stuck indefinitely. (The creator of the
KPIToken contract may inadvertently send tokens to the KPIToken contract.)

3.2 Useless Constant
The private constant _10000 in KPITokensFactory can just be replaced with the
integer contant 10000. (It wouldn’t make sense for the constant _10000 to be any other
value except 1000, and having the constant declared at the top level of the contract
doesn’t make the code any clearer.)

3.3 Integer Rounding Error
When the difference between the upper and lower bounds for the KPI range used in
KPIToken.finalize() is small and the number of decimals in collateralToken is
also small, then the integer truncation that occurs in lines 96 and 97 due to the division
operation may cause a non-trivial number of tokens to be stranded in the contract. As
an extreme example, if there is only 1 zero-decimal collateralToken in the contract
and the final KPI progress is more than zero but less than the upper bound (for example,
1 of 3), then that single token will never be distributed because any fractional quantity
of that token will round to zero.

Although this bug is unlikely to occur in practice, it may make sense to restrict the
collateralAmount so that the number of tokens (independent of decimals) is signifi-
cantly larger than magnitude of the KPI range. For example, require(collateralAmount

4



> _kpiFullRange * 100) would guarantee that redemption and finalization never
yield more than a one percent round-off error.

3.4 Suspicious Ownership Transfer
DXdaoLiquidityMiningRelayer.createDistribution() calls transferOwnership(msg.sender)
on the newly-created contract. However, the createDistribution() function is la-
belled as onlyOwner, so presumably the only possible value of msg.sender is owner.
Consider explicitly calling transferOwnership(owner) to make it clear that this is
the expected behavior. (Conversely, if this is not the intended behavior, then either the
onlyOwner modifier should be removed or the argument to transferOwnership()
should be changed!)

5


	1 Introduction
	1.1 Scope of Work
	1.2 Source Files
	1.3 License and Disclaimer of Warranty

	2 Moderate Issues
	2.1 Reentrancy in Finalization

	3 Minor Issues
	3.1 Lost Collateral Tokens
	3.2 Useless Constant
	3.3 Integer Rounding Error
	3.4 Suspicious Ownership Transfer


